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Kurzfassung

Neben den Genauigkeitsmetriken sind Fairness und Diversität zu weithin untersuch-
ten Themen in Empfehlungssystemen geworden. Die Verbesserung dieser Metriken ist
nicht nur aus ethischer und rechtlicher Sicht wichtig, sondern kann auch die allgemeine
Zufriedenheit der Nutzer und Nutzerinnen verbessern. Obwohl Fairness- und Diversitäts-
metriken weithin diskutiert werden, gibt es nur sehr wenige empirische Untersuchungen,
insbesondere zum Vergleich verschiedener Algorithmen mit unterschiedlichen Metriken.
Diese Arbeit untersucht die Rolle von Fairness und Diversität in Empfehlungssystemen
für Nachrichten, insbesondere im Kontext der österreichischen Medienlandschaft. Ziel
dieser Studie ist es, die effektivsten Ansätze zur Generierung von fairen und vielfältigen
Nachrichtenempfehlungen zu identifizieren und gleichzeitig die möglichen negativen Folgen
von einseitigen Empfehlungen und Filterblasen, wie z.B. gesellschaftliche Polarisierung
und die Unterdrückung von Informationen, zu berücksichtigen. Die Forschungsmethoden
umfassen eine umfassende Literaturrecherche über relevante Metriken zur Gruppenun-
gerechtigkeit und modernste Algorithmen, die auf Fairness ausgerichtet sind. Darüber
hinaus wurde ein Datensatz von Artikeln einer österreichischen Zeitung für die empirische
Untersuchung verwendet, wobei die politische Ausrichtung, Fairness und Vielfalt der
Empfehlungen analysiert wurden. Die Kernergebnisse dieser Studie sind, dass Genauigkeit
und Fairness mit dem richtigen Modellierungsansatz gleichzeitig erreicht werden können,
während die Vielfalt mit diesen Modellierungstechniken konstant gehalten werden kann.
Die Studie empfiehlt die Verwendung von personalisierten Fairness-Modellen auf der
Grundlage von Kausalvorstellungen für die Genauigkeit und die Verringerung bestimmter
Unfairness-Kennzahlen und stellt fest, dass Fairness-Ziele für kollaborative Filtermodelle
bei der Verringerung anderer Arten von Unfairness effektiver sind. Die Ergebnisse leisten
einen Beitrag zum Fachgebiet, indem sie zeigen, wie wichtig es ist, Fairness- und Diversi-
tätsmetriken in die Entwicklung und Bewertung von Empfehlungssystemen einzubeziehen
und indem sie Hinweise auf die effektivsten Ansätze zur Erreichung dieser Ziele geben.
Die Studie gibt weiters interessante Einblicke in das Leseverhalten und die politische
Ausrichtung von Nachrichtenartikeln, welche von Österreicherinnen und Österreichern
gelesen werden und zeigt den Bedarf an weiterer Forschung in diesem Bereich auf.
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Abstract

Beyond accuracy metrics, such as fairness and diversity, have become widely studied
topics in recommender systems. Improving these metrics is important not only from an
ethical and legal perspective, but can also improve overall user satisfaction. Although
fairness and diversity metrics are widely discussed, very little empirical research has
been done, especially comparing multiple algorithms across different metrics. This thesis
explores the role of fairness and diversity in news recommender systems, specifically in the
context of the Austrian media landscape. This study aims to identify the most effective
approaches for generating fair and diverse news recommendations, while addressing the
potential negative consequences of biased recommendations and filter bubbles, such as
societal polarization and the suppression of information. The research methods include
an extensive literature review of relevant group unfairness metrics and state-of-the-art
fairness-aware algorithms. In addition, a dataset of articles from an Austrian newspaper
was used for empirical research, with analysis performed on political labeling, fairness,
and diversity of recommendations. The key message of the study is that accuracy and
fairness can be achieved simultaneously with the right modeling approach, while diversity
can be held constant using these modeling techniques. The study recommends the use of
Personalized Fairness based on Causal Notion models for accuracy and reducing certain
unfairness metrics, and finds Fairness Objectives for Collaborative Filtering models more
effective at reducing other types of unfairness. The findings contribute to the field by
demonstrating the importance of incorporating fairness and diversity metrics into the
design and evaluation of recommender systems, and by providing guidance on the most
effective approaches to achieve these goals. The study also reveals interesting insights
into the reading behaviors and political lean of news articles read by Austrians, and
suggests the need for further research in this area.
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CHAPTER 1
Introduction

1.1 Preface

Recommender systems (RS) have gained such vast popularity during the internet age, that
they can be seen in all facets of our daily lives. We are surrounded by recommendations
of what movies to watch, what clothes to buy, and what news to read. Not only are these
systems instrumental in helping us make quicker decisions, but they have also become
essential as the amount of information available on the internet far exceeds our processing
capacity [Jac84]. However, as recommender systems have risen in popularity, so has our
realization of possible negative aspects that come along with these recommendations.
Negative effects such as filter bubbles, bias, and unfair recommendations have come into
the spotlight recently. To combat these unintended consequences, many authors have
focused on beyond-accuracy measures, such as diversity, serendipity, and fairness. In fact,
in the past five years, more than 60 fairness-related recommender system papers have
been published in top conferences and journals [WMZ+22].

1.2 Motivation

According to research performed by the Pew Research Center in 2020, approximately
86% of adults in the US consume news online through digital newspapers, social media,
news apps, etc [She21]. With the majority of adults receiving their news online, there is
an obligation to create recommendations that are fair and unbiased. At an individual
level, overly personalized news recommendations may cause filter bubbles by not exposing
the reader to other points of view, which over the long term can cause them to avoid
counter-attitudinal information [Hel19]. At the societal level, this behavior can create
more polarization in an already polarized world and poses a threat to democracy in a
sense through the unintended suppression of information.
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1. Introduction

Fairness Definition. This thesis will focus on fairness of news recommender systems
(NRS) between groups using the consistent fairness (CF) definition. Specifically, we
define fairness as:

“The lack of discrimination against a certain group, ie the absence of a
differential impact on the outcomes created for them.” [Meh22]

CF indicates that groups of users should be treated similarly, and therefore measurements
of CF measure the inconsistency of the utility distribution [WMZ+22].

Most research involving group fairness revolves around fairness of accuracy [ETA+18,
SHFT15, MZS20], and it is easy to see the implications of unfairness of group accuracy. On
the surface level, it is important to ensure user satisfaction by providing recommendations
of equal quality to all users using a service. Despite this importance, inequalities still exist,
such as female users and older users receiving worse movie and music recommendations
[ETA+18]. On a deeper level, unfair recommendations may have major societal impacts,
such as the Google study which showed that female users are less likely to see job postings
for highly compensated executive positions [DTD15].

Although fairness of accuracy is an important topic, existing research has shown unfairness
and bias also exist in beyond-accuracy recommendation metrics like diversity and novelty
[WC21]. Increasing diversity in particular has been linked to user satisfaction and
better quality perception by users, therefore it is an important metric to consider in RS.
[WMZ+22, EHWK14, PCH11, ZMKL05].

In the news domain in particular, diversity is crucial not only to keep users interested
and engaged but also to expose users to counter-attitudinal behavior and keep readers
from becoming trapped in filter bubbles [RD20]. For this reason, in addition to focusing
on fairness of accuracy, this thesis also includes fairness of diversity in the analysis.

User Grouping. There are a variety of ways to divide groups, with common divisions
including gender, age, and race. This research will split the data by two sensitive
attributes: first by gender and then by geographic location.

Geographic location grouping is particularly interesting when it comes to news recom-
mendations with the current state of the political divide in the United States. In the 2016
presidential election, Hillary Clinton won eight of the ten largest metropolitan areas and
the majority of metropolitan areas of more than one million residents; Donald Trump
won all other types of areas [Max19]. In the 2018 midterm election, Democrats won every
congressional district in the largest urban areas, while Republicans won 87% of rural
districts [Max19]. This difference in voting preference is attributed in part to the polar-
ization between individuals living in large cities and small towns. City dwellers tend to
be more diverse, better educated, and more likely to work in white-collar jobs [LTDSL22].
They also tend to have more progressive values around gender rights, homosexuality,
immigration, and the family dynamic [LTDSL22].
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1.3. Considerations

This voting trend can also be seen in the 2019 Austrian parliament elections, where
Vienna was the only Austrian state to vote differently than the others. Accordingly,
this thesis explores the concepts of fairness and bias in the context of Austrian news
media, with the motivation to ensure recommender systems do not create an even larger
divide in society through selective recommendations and filter bubbles. Anonymized data
is provided by the Austrian newspaper STANDARD Verlagsgesellschaft m.b.H.1(Der
Standard).

1.3 Considerations
In order to ensure the efficacy of recommender systems, it is crucial to mitigate unfairness
phenomena. There are several reasons why fairness is of utmost importance.

1. From an ethics perspective, Aristotle listed fairness as one of the crucial virtues to
make people live well, making it an important ethical consideration that remains a
fundamental requirement for a just society [ARB09, Raw99].

2. From a legal perspective, anti-discrimination laws [Hol05] require that public ser-
vices, employment, admissions, housing, etc., do not discriminate against different
groups based on age, race, gender, and other such factors. For instance, in a job rec-
ommendation scenario, minority-owned companies should receive recommendations
at a rate equivalent to white-owned companies.

3. From an individual perspective, a fair recommender system helps expose users to
diverse information in the recommendations, including niche information, which
can help break filter bubbles, alleviate societal polarization, broaden horizons, and
enhance the value of recommendations.

4. From a product perspective, fairness is crucial for the success of recommender
systems in the long run. When a system is unfair, it may lead to negative user
experiences by recommending popular content to users with niche interests, or
provide insufficient exposure to niche providers, thus limiting the diversity of content
and users on the platform, and ultimately impacting its growth [MCBP+20].

1https://www.derstandard.at/
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1. Introduction

1.4 Research Questions
The main objective of this thesis is to implement multiple fairness-aware news recom-
mender systems and compare the results across various metrics. The data is grouped by
two sensitive attributes: gender and geographical location. Specifically, the main research
questions of this thesis are defined as:

RQ1: To what extent do different reading behaviors of different groups impact recom-
mender systems and recommendations in the domain of news media?

RQ2: When is it appropriate to use different fairness metrics for NRS?

RQ3: To what extent do different recommender system algorithms affect these fairness
metrics, in terms of improvement made, cost to accuracy, affect to diversity etc.?

1.5 Methodology
The methodological approach follows a common data science methodology called Cross-
Industry Standard Process for Data Mining (CRISP-DM) [She00], in addition to a
Literature Review. Figure 1.1 shows the CRISP-DM process. The steps in the context of
this thesis are:

1. Literature Review
To establish the current state of group fairness research in recommender systems,
the literature review in Chapter 2 provides the background on various fairness
metrics and algorithms to improve group fairness.

2. Business (Problem) Understanding
At this stage, we worked with Der Standard to understand any needs the business
might have.

3. Data Understanding
At this point, time was spent to understand where the data comes from, how it is
collected, and what is contained in the data. Chapter 3 outlines the background of
the data and an exploratory data analysis of applicable fields.

4. Data Preparation
This stage is covered in Chapter 3 when data needed to be prepared for modeling.
Steps include:

• Click data was filtered to relevant click events.
• Articles were translated into English and political lean was predicted using a

Natural Language Processing (NLP) algorithm.

4



1.5. Methodology

• Users were grouped according to two sensitive attributes: gender and geo-
graphical location.

5. Modeling
Chapter 4, Section 4.1 covers the modeling section, in which hyperparameters were
tuned and the models were applied to the data.

6. Evaluation
Chapter 4, Section 4.2 covers the evaluation of the applied algorithms.

7. Deployment
Deployment is not covered as part of this thesis.

Figure 1.1: CRISP-DM process diagram [Jen12].
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CHAPTER 2
Background

In order to fully understand the importance of fairness within NRS, this chapter starts
with the main causes of unfairness. It then moves into how fairness can be measured via
various metrics, and provides an understanding of algorithms including both traditional
and fairness-aware algorithms. This will serve as the theoretical background before
moving into the application of these topics.

2.1 Imbalanced Data
Bias in recommender systems can have a significant impact on the recommendations
provided to users. There are two main forms of bias that can be inherited from data:
observation bias and bias that comes from imbalanced data [YH17].

Observation bias is caused by a feedback loop in the data collection and recommendation
system. An item displayed by the recommender system may result in user feedback for
that item, which is then fed back into the model [FKT+18]. This feedback loop reinforces
the ranking algorithm used by the recommender system to make more recommendations
that are similar to those made previously. As a result, if a user is never exposed to a
product, they are unable to provide feedback on it, which results in a lack of diversity in
the suggestions made. For example, if a user on a movie streaming website was never
given movie recommendations from a certain genre, the system will never learn the user’s
preference of that genre, leading to a bias.

On the other hand, an imbalance in data is a result when systematic bias is present due
to societal, historical, or other ambient biases. It is more difficult to address this type of
bias because the model is not aware of it. For example, in the context of women in STEM
(science, technology, engineering, mathematics), due to societal problems, there may be a
smaller proportion of women who succeed in STEM as compared to men [YH17]. This
bias is not known to the model, which may only know the gender of users, but not their
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2. Background

proclivity towards STEM [YH17]. These biases have been researched and addressed in
different contexts with use of multi-arm bandits and diversity-based recommendations
[FKT+18]. Although these approaches tend to handle bias by increasing the diversity of
a recommender system, they do not directly address the issue of fairness. More recently,
fairness in recommender systems has been explored through the use of fairness metrics,
which will be discussed in the next section.

2.2 Metrics
First, we provide the notations and explanations of commonly used variables in the
chapter (see in Table 2.1).

Notation Explanation
n number of users
m number of items
r̂u,i prediction for user u on item i
ru,i ground truth feedback of user u on item i
U = u1, ..., un the whole set of users
I = i1, ..., im the whole set of items
L̂(u) a ranked list of items that a model produces for user u
L(u) a ground-truth set of items that user u has interacted with
K the length of the recommendation list
Gj the j-th group of individuals
Ej [r̂]i the average rating predicted rating of group j on item i
Ej [r]i the average rating of group j on item i

Table 2.1: Notations and explanations of common variables.

2.2.1 Common Accuracy Metrics

This section provides the definitions for common accuracy metrics of recommender
systems which will be used as part of the analysis section. In all metrics, we use the
Top-K recommendation list.

8



2.2. Metrics

Normalized Discounted Cumulative Gain (NDCG@K). NDCG@K [BYRNo99]
is a measure of ranking quality in which positions are discounted logarithmically. This
gives higher weights to correctly recommended items in higher ranks. It is defined as the
Discounted Cumulative Gain (DCG) divided by the Ideal Discounted Cumulative Gain
(IDCG). Consider a ranked list where ij represents the item at rank j. DCG is defined
as:

DCG@K =
K∑

j=1

ru,ij

log(j + 1)

and IDCG is the same equation as DCG, but with an ideal ranking (in which the highest
ranked items take the highest ranking positions, perfectly). In this aspect, the metric is
normalized by dividing by IDCG. Formally, NDCG is defined as:

NDCG@K = DCG@K

IDCG@K

Recall@K. This measure computes the proportion of relevant items recommended
divided by the total number of relevant items [Wan21]. Higher recall means the system
has successfully recommended a high proportion of relevant items. In the context of
news recommender systems, it is important to capture the highest proportion of relevant
articles as possible for the user. The measure is defined as:

Recall@K = 1
|U |

∑
u∈U

|L̂(u) ∩ L(u)|
|L(u)|

Hit@K. Also known as Hit Ratio (HR), this measure calculates the percentage of users
with at least one relevant article in their recommendation list [AHD20]. It is defined as:

HR@K = 1
|U |

∑
u∈U

δ
(
L̂(u) ∩ L(u) ̸= ∅

)
where δ represents an indicator functions that returns 1 when the condition is true and 0
when the condition is false. ∅ denotes an empty set.

Mean Reciprocal Rank (MRR@K). This metric computes the reciprocal rank of
the first relevant item in the recommendation list [Wan21]. High MRR represents the
algorithm finding a relevant item quickly in the ranking. It is defined as:

MRR@K = 1
|U |

∑
u∈U

1
rank∗

u

where rank∗
u is defined as the rank position of the first relevant item found in the

recommendation list.

9



2. Background

2.2.2 Common Fairness Metrics

Fairness is an interesting concept in recommender systems because its definitions and
corresponding metrics can vary widely. As stated previously, this paper will focus on
group fairness using the definition of consistent fairness. Even with this narrower focus
on fairness, there exist at least nine different metrics found in the literature. These nine
metrics are displayed in Table 2.2. Since this thesis will focus only on comparing binary
groups (ex. Male vs Female), only metrics that compare binary groups are covered.

In order to help with the understanding of some metrics below, we will use the example
introduced above regarding the proportions of males vs females in STEM. In this context,
our example is concerning a recommender system recommending (or not recommending)
university students to take STEM courses.

TargetMetric Name Def Two Groups More Groups Individual
Absolute Difference CO ✓ X X
Value Unfairness CO ✓ X X
Absolute Unfairness CO ✓ X X
Underestimation Unfairness CO ✓ X X
Overestimation Unfairness CO ✓ X X
Non-Parity CO ✓ X X
Variance CO - ✓ ✓
Min-Max Difference CO - ✓ ✓
F-Statistic of ANOVA CO - ✓ X

Table 2.2: List of group fairness metrics. Table inspired by [WMZ+22].

Absolute Difference Unfairness (AD). Absolute difference unfairness revolves around
the concept of fairness in the quality of recommendations between two groups. It is
defined as the absolute difference of the average recommendation performance between
group G0 and group G1. Different recommendation performance metrics may be used,
such as NDCG@K in [LCF+21], [FXG+20]. Some papers use this metric especially to
check for fairness when group data is unbalanced [LCF+21], [FXG+20]. Lower values
indicate fairer recommendations. For a function f computing average recommendation
performance:

AD = |f(G0) − f(G1)|

Value Unfairness. Value unfairness [YH17] was created to measure the inconsistency
in signed error between two user groups. Value unfairness is maximized when one group
is consistently given recommendations above their true preference, and the other group
is consistently given recommendations below their true preference. An example would
be female students being under-recommended STEM courses, and male students being

10



2.2. Metrics

over-recommended STEM courses. The equation for value unfairness is given as:

Uval = 1
m

∑
i=1

m|(E0[r̂]i − E0[r]i) − (E1[r̂]i − E1[r]i)|

Absolute Unfairness. Absolute unfairness [YH17], on the other hand, measures the
inconsistency of absolute prediction error. Since absolute unfairness is unsigned, it
captures solely the difference in reconstruction error between the two groups. Absolute
unfairness is maximized when one group is given recommendations perfectly matching
their preferences, and the other is given recommendations that are very different than
their preferences. Absolute unfairness is defined as:

Uabs = 1
m

∑
i=1

m||E0[r̂]i − E0[r]i| − |E1[r̂]i − E1[r]i||

Underestimation Unfairness. Underestimation unfairness [YH17] measures how
much the predictions underestimate the true ratings. Underestimation unfairness is
important in situations where missing recommendations are weighed more heavily than
extra recommendations. For example, underestimation unfairness could lead to students
missing out on courses they would excel in.

Uunder = 1
m

∑
i=1

m|max(0, E0[r]i − E0[r̂]i) − max(0, E1[r]i − E1[r̂]i)|

Overestimation Unfairness. Overestimation unfairness [YH17] measures the degree
to which the predictions overestimate the true ratings. Overestimation unfairness can
cause users to invest large amounts of time in order to sift through recommendations.

Uover = 1
m

∑
i=1

m|max(0, E0[r̂]i − E0[r]i) − max(0, E1[r̂]i − E1[r]i)|

Non-Parity Unfairness. Non-parity unfairness [YH17] is defined as the absolute
difference in overall predictions between the two groups.

Unonpar = |E0[y] − E1[y]|

2.2.3 Fairness of Diversity

This paper includes fairness of diversity in its main scope. Diversity in recommender
systems refers to the diversity of items given in a recommendation list. When discussing

11



2. Background

diversity fairness, most research refers to item fairness, in which recommender systems
unfairly promote popular items, therefore creating a feedback loop. However, fairness of
diversity can also be examined from the side of the users [WC21]. This unfairness occurs
when certain users are receiving a more diverse recommendation list than other users.
Some studies have found that existing methods to improve recommendation diversity
can worsen user unfairness [LAK18], so it is important to add this metric to the model
comparison. We will use two metrics in this analysis.

Entropy. Entropy is a common measure of diversity in recommender systems [MAP+20,
MAP+22, PBG+20]. It measures the uniformity of a distribution; in the case of recom-
mender systems, it measures the uniformity of a distribution of recommended items. A
uniform distribution has the highest entropy or information gain, therefore high entropy
is desired to increase diversity. Where p(i) represents the probability of event i, entropy
is defined as:

Entropy = −
∑
i∈I

p(i) ∗ log p(i)

Dissimilarity. Entropy is focused more on measuring the exposure of items in a
recommendation list, but we are also interested in the diversity of content of the items.
For this, we introduce item dissimilarity as a measure [KP17, SAHN22]. The intra-list
diversity can be measured by computing the cosine similarity of each pair of items (i,j)
in the recommendation list L̂, and calculating the average. The dissimilarity measure is
defined as:

Dissimilarity = 2
K(K − 1)

K∑
i=1

K∑
j=1

(1 − cos(i, j))

2.3 Algorithms

2.3.1 Traditional Algorithms

In the news domain, recommender systems are used to help readers discover and consume
relevant news articles. News recommender systems, in particular, face a number of unique
challenges, including the dynamic nature of the news environment, the need to consider
the relevance of news articles, and the fact that users’ interests may change over time.

Content-based filtering (CBF) algorithms are often used in news recommender systems
because they can take into account the content and attributes of the news articles being
recommended. These algorithms build recommendation lists by comparing the user profile
and item profile based on the content of a shared attribute space [RD22]. CBF algorithms
can be effective in recommending news articles that are relevant to the user’s evolving
interests, but they may struggle to handle large numbers of temporary or anonymous
users, and may not be able to fully capture the semantics and context of the news content.
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Collaborative filtering (CF) algorithms, on the other hand, are content-free and rely
on the interactions between users and news articles to make recommendations [RD22].
CF algorithms can be effective in recommending news articles that other users with
similar interests have enjoyed, but they require a sufficient amount of data about users’
interactions with news articles to be effective. This can be a challenge in the fast-paced
news environment, where the value of news articles can decay quickly.

In order to combine the strengths of both CF and CBF algorithms, hybrid approaches
use both collaborative and content-based information to make recommendations [RD22].
These approaches can be particularly effective in situations where both types of informa-
tion are available. Figure 2.1 shows the difference between the two methods.

Figure 2.1: Content-Based Filtering vs Collaborative Filtering by [Ton18]

2.3.2 Matrix Factorization

Building on the collaborative filtering algorithm is matrix factorization (MF), which is
a popular model-based method that first gained recognition in the Netflix competition
[KBV09]. Matrix factorization models map users and items to a joint latent factor
space, such that user-item interactions are modeled as inner products in that space
[KBV09]. These methods have become popular in recent years due to their combination
of scalability and predictive accuracy while also offering flexibility for modeling various
real-life situations [KBV09].

The rating of user u on item i can be represented by the following equation:

rui ≈ pT
u qi + wu + vi

where pu is the matrix representing the uth user and qi is the matrix representing the
ith item, and wu and vi are scalar bias terms for user and item [YH17]. The goal is to
learn the matrices P and Q by minimizing the Mean Square Error, plus a regularization
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term to prevent overfitting (where λ is the coefficient of regularization), making the total
cost function:

J = 1
|R|

∑
ru,i∈R

(yui − rui)2 + λ

2 (||P2|| + ||Q2||)

where R represents the observed ratings.

Matrix factorization will help serve as a baseline when comparing modeling results in
later chapters.

2.3.3 Fairness Objectives for Collaborative Filtering (FOCF)

The problem with these traditional algorithms is that they are susceptible to bias as
discussed previously, which may result in unfairness to certain protected groups. Recently,
a number of techniques have emerged with the intention of focusing on improving fairness
as it relates to the previously discussed metrics.

The initial strategy to protect algorithms from unfair and biased decisions was to remove
sensitive features. This strategy can alleviate a certain amount of unfairness, but it is
often incomplete. Oftentimes, sensitive features are correlated with unprotected features,
and as a result, a model may still make biased decisions [KAS11]. In addition, methods
such as collaborative filtering may be able to infer latent user attributes from a user’s
behavior [YH17].

Another common strategy is to enforce demographic parity, which aims to guarantee the
overall proportion of members in a protected group has the same positive or negative
outcomes as the rest of the population [YH17]. For example, where we have a binary
decision Ŷ ∈ {0, 1} and a binary protected attribute A ∈ {0, 1}, the constraint is expressed
as [HPS16]:

Pr{Ŷ = 1|A = 0} = Pr{Ŷ = 1|A = 1}

Methods [KAS11] have been created to solve this parity issue by adding a regularization
term to control for demographic parity. However, this approach is limited in that it
doesn’t take into account the fact that sensitive features are commonly correlated with
user preferences. Features such as gender, race, and age typically affect user ratings, and
therefore this method may make the recommender system less effective.

To address the issue of dependence on preferences and sensitive features, Hardt, et al.
[HPS16] propose a new method. Given the same binary decision and sensitive feature in
the previous example, and the true label Y ∈ {0, 1}, they propose the constraint [HPS16]:

Pr{Ŷ = 1|A = 0, Y = y} = P{Ŷ = 1|A = 1, Y = y}, y ∈ {0, 1}

This constraint encourages fairness which also respects differences in group preferences,
and is the basis of the fairness metrics proposed by Yao & Huang [YH17].

This brings us to the algorithms created by Yao & Huang [YH17], which are based on
the previously discussed metrics such as value unfairness, absolute unfairness, etc. They
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use standard matrix factorization and collaborative filtering methods to learn latent
representations of users and items; however, to improve model fairness, they augment
the objectives with these unfairness metrics as penalty functions and minimize these new
cost functions [YH17].

The authors found that not only could each metric be optimized separately, but also opti-
mizing any of the metrics typically decreased the other unfairness metrics [YH17]. They
also found that optimizing these metrics leads to no significant increase in reconstruction
error [YH17].

2.3.4 Personalized Fairness based on Causal Notion (PFCN)

Causal Fairness. The FOCF method is an associated-based (or correlation-based)
fairness notion, which mainly focuses on discovering differences in statistical metrics
between groups. Contrary to association-based concepts, causal-based notions use causal
models, which take advantage of prior information about the structure of the world to
explain how variable changes in the system propagate [LCX+21]. Causal-based fairness
notions have become more researched in recent years to address unfairness in machine
learning methods [KLFH19, KLRS18, ZB18a, ZB18b]. The authors of Towards Person-
alized Fairness based on Causal Notion [LCX+21] build their fairness-aware technique
around causal notions.

In this method, in order to ensure fairness, the probability distributions of the model
outcomes must be equivalent in the factual and counterfactual world in relation to each
individual [LCX+21]. In other words, for a recommender system to be fair in terms of
causal fairness, if a user’s sensitive features are changed there should be no changes in the
recommendations results, given the other features that are not dependent on the sensitive
features remain unchanged. In some cases, this method may be more reasonable than
enforcing equality of metrics such as in association-based notions, as users of different
groups may have different preferences.

The authors [LCX+21] define fairness (specifically counterfactual fairness), as a recom-
mender model in which for all possible users u with sensitive features Z = z and features
that are not causally dependent on Z, X = x:

P (Lz|X = x, Z = z) = P (Lz‘ |X = x, Z = z)

for all L and for any value z‘ attainable by Z, where L denotes the Top-N recommendation
list for user u.

Framework. In classification tasks, the most straightforward way to ensure independence
between sensitive features and predictions is to avoid using sensitive features in the
candidate input feature set [KLRS18]. However, it is not so easy with recommender
systems. Typical recommender systems take advantage of the user-item interaction matrix
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and the model may capture the relevance between user features and user behaviors if
there is a causal impact present. Instead, counterfactual fairness in recommender systems
must be realized in a nontrivial way.

Figure 2.2: Causal path from [LCX+21].

The causal relations for recommendation systems are represented in Figure 2.2. For any
given user u, Xu and Zu represent the insensitive and sensitive user features, respectively.
Hu is the user-item interaction history, ru is the user embedding, Cu is the candidate
item set, and Su is the predicted scores for candidate items.

For any given user u, the scoring function Su creates the recommendation list by taking
the user embedding ru and the candidate item embedding Cu as inputs [LCX+21]. As
shown in 2.2, the user embedding ru is learned from the user history matrix Hu, which
depends on the user features Xu (non-sensitive features) and Zu (sensitive features)
[LCX+21]. As a result, to meet the counterfactual fairness requirement, the causal path
between Zu and the recommendation output shows that only the independence between
ru and Zu must be ensured [LCX+21].

The Model. The main idea of the authors’ method is to use adversary learning;
specifically, the authors train a predictor that learns informative representations for the
recommendation task, while simultaneously training an adversarial classifier that seeks to
minimize the predictor’s ability to predict the sensitive features from the representation
[LCX+21]. This strategy thereby removes the sensitive feature information from the user
embedding.

The architecture of the model is shown in Figure 2.3. The first step is to introduce a set
of filter functions that filter the sensitive feature information from the user embeddings ru.
The authors discuss two methods of training filter functions, however, for our purposes
only one will be discussed. That method is called the separate method (SM), and in this
method, one filter function is trained for each potential combination of sensitive features.
For example, if Q is the set of sensitive features containing age and gender, three filter
functions are trained: fA, fG, fA,G.

To learn the filter functions, adversary learning is used to train a set of discriminators;
where k represents the number of sensitive features, each sensitive feature Zk, a classifier
Ck is trained which aims to predict Zk from the user embeddings [LCX+21]. Therefore,
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Figure 2.3: Framework from [LCX+21].

the objective of the filter functions is to make it difficult to predict the sensitive features
from the user embeddings, and the objective of the discriminator is to defeat the filter
functions. Since our analysis trains separate models for each feature, we will adapt the
model accordingly.

The loss of the recommendation task LRec and the loss of the discriminators LC (to
predict the sensitive features) are optimized together. Therefore, the adversary learning
loss L is defined as:

L =
∑
u,v

(
LRec(u, v) − λ

∑
z∈Z

LC(r∗
u, z)

)

where λ denotes the adversarial coefficient and controls the trade-off between performance
and fairness.

In the original paper [LCX+21], the authors apply their technique to four different
methods, to demonstrate its effectiveness on both deep and shallow learning algorithms.
This paper will apply their technique to those same methods, and therefore, a short
introduction to each method is provided here.

Probabilistic matrix factorization (PMF). PMF is a class of MF models having
intuition coming from Bayesian learning for parameter estimation, in which it adds
Gaussian observation noise into the user and item latent factor distributions [MS07]. The
model scales well with large numbers of observations, and sparse, imbalanced datasets
[MS07]. In a social recommender system, PMF is utilized to integrate the user-item rating
matrix and social network structure, and a similar concept is applied in an NRS [LXL+12],
which addresses the data sparsity issue by including news content, user interactions, and
social network information into the PMF model.

PMF runs under the assumption that the entries of the user-item interaction matrix
are normally distributed with mean equal to the inner product of the user and item
vectors with constant variance. Under this model, the user-factor and item-factor
matrices are learned by maximizing the log-likelihood of the observed ratings under the
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probabilistic model. PMF is typically more effective than standard matrix factorization
in recommendation settings because the model can effectively handle missing values and
uncertainty in the rating matrix.

Biased Matrix Factorization (BiasedMF). This algorithm is the same as the matrix
factorization method (subsection 2.3.2) discussed previously but adds a global bias term
[KBV09]. The bias term takes into account that some users may have a higher tendency
to rate items positively or negatively, and that some items may be inherently more
popular or less popular than others. BiasedMF aims to model these biases along with
the latent factors that represent user and item preferences.

Wide & Deep model (WideDeep). The Wide & Deep model, shown in Figure
2.4, attempts to achieve both memorization and generalization in recommender systems
by combining a generalized linear model (wide model) with a neural network (deep
model) [CKH+16]. The linear model consists of a wide set of cross-product feature
transformations and is able to memorize feature interactions, but generalization requires
a large amount of effort at the feature engineering stage. The deep neural network requires
less feature engineering and can generalize more effectively to new feature combinations
using low-dimensional dense embeddings learned for sparse features. However, deep neural
networks can over-generalize and are less effective with sparse user-item interactions.
Recommendations involving memorization are typically more topical and relevant to the
items which users have already rated, whereas generalization helps improve the diversity
of recommendations [CKH+16].

Figure 2.4: Visualization of the Wide and Deep model [CKH+16].

Deep Matrix Factorization (DMF). DMF [XDZ+17] extends and adapts the approach
of matrix factorization by introducing a deep neural network to model the interactions
between users and items. The model takes the user and item embeddings obtained
from the factorization step as input and a fully connected layer learns the non-linear
interactions between user and item embeddings. The authors train the model using a
combination of stochastic gradient descent and backpropagation to minimize the MSE
[XDZ+17]. The authors show the model performs well, especially on sparse datasets
[XDZ+17].
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CHAPTER 3
Empirical Research

In order to understand the recommendations that an NRS produces, it is important to
understand the underlying reading behaviors of the database of users. This section will
take a deeper dive into the data we will be using, and analyze the differences in reading
behaviors of our specified groups.

3.1 Data Description
Data is provided by the Austrian newspaper Der Standard, and includes customer data
collected from the year 2000 through 10 November 2021. All of the data have been
completely anonymized. Relevant data includes gender, user creation date, time of visit,
geolocation of visit, channel resort, object type, and article publishing date.

User Interactions. This analysis uses the last 30 days of user interaction data available
from Der Standard; The dates are between 12 October 2021 and 10 November 2021. For
this analysis, we consider a click on an article to be user interest in that article, and
therefore consider it an interaction with that item. Only interactions with articles were
used. There is also the case of interactions on a single article multiple times; the user
may have read part of the article and came back to it later, or other situations in which
the user returned to the same article. The amount of interactions by a user on each
article is not considered in this analysis. In this event, only the first click is kept for the
purposes of recording day, time, geolocation, etc.

Political Labels. The political leaning of articles is also of interest in this section,
so the text from the articles was prepared. Articles of the categories: Diverse, Inland,
International, Panorama, Europe, Columns, Commentary, World Chronicle, Economic
Policy, and Austria Chronicle were first translated into English and then ran through a
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semantic analysis NLP model1. The model was initially trained on a political bias dataset
from Media Bias Fact Check2. The training dataset contains more than 52k articles from
100+ news outlets. Labels were created by human annotators with the following possible
labels: extreme right, right, right center, least biased, left center, left, and not labeled.
For the purposes of this analysis, articles predicted as extreme right were given the label
right because of the very small number of predictions with that label.

Predicting political bias is already a difficult task, and first having to translate the
articles makes the task of an NLP model even more difficult. After applying the model,
unfortunately, most of the articles were scored as unknown (78%). Table 3.1 displays
the political label broken down by article category. The analysis focuses only on articles
with labeled predictions. Figure 3.1 illustrates the lean of each category.

Subcategory Left LeftCenter LeastBiased RightCenter Right Unknown
Diverse 0.000 0.065 0.261 0.032 0.279 0.363
Inland 0.000 0.065 0.012 0.000 0.080 0.842
International 0.005 0.130 0.014 0.000 0.116 0.735
Panorama 0.001 0.054 0.023 0.000 0.074 0.849
Europe 0.001 0.113 0.031 0.001 0.033 0.821
Columns 0.000 0.075 0.000 0.000 0.075 0.850
Commentary 0.005 0.119 0.014 0.003 0.031 0.828
World Chronicle 0.000 0.095 0.095 0.003 0.041 0.766
Economic Policy 0.001 0.126 0.051 0.003 0.072 0.747
Austria Chronicle 0.001 0.093 0.059 0.000 0.071 0.776
All 0.001 0.086 0.043 0.003 0.080 0.786

Table 3.1: Political lean prediction by subcategory.

It is interesting to note the category differences. Diverse seems to be the most right-
leaning on average, and none of the categories sticks out as the most left. Diverse is
also the most non-polarizing with the most articles labeled as least biased, whereas the
proportion of unbiased articles in Inland, International, Columns, and Commentary
is much lower, making them more polarizing categories. As an overall note, the vast
majority of articles leaning right are labeled as right as opposed to right center. On the
contrary, left-leaning articles are almost always labeled left center. It is unclear why this
occurs in the data. It is possible the left-leaning articles tend to be more unbiased than
the right, or it is possible the human annotators of the training set were more likely to
label articles as left center.

1https://huggingface.co/valurank/distilroberta-mbfc-bias
2https://mediabiasfactcheck.com/
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Figure 3.1: Article political leaning by category.

3.2 Gender
Our first sensitive attribute is gender. In this section, we will explore how gender is
specified and analyze the different reading behaviors across genders.

3.2.1 Exploratory Data Analysis

After registering for a user account, a user is allowed to select a gender of either male
or female, or leave the information blank. Before 2017, users were prompted to select a
gender when signing up for an account, whereas in 2017 and after, there is no prompt
to assign a gender. This is apparent in the data (see Figure 3.2), where the proportion
of Not Specified gender sharply increases in 2017. For the purposes of this analysis,
only users with assigned gender are included. Consequently, the data contains a higher
proportion of users who created their account before 2017 than is actually representative.
Nevertheless, this gender analysis makes use of the data available with the consideration
that the proportion of users with gender is much lower for newer users.

After merging the user data with the click data, some interesting statistics arise in Table
3.2. Although females make up 36% of the overall user base, they make up less than
20% of the users who actively read an article in the last 30 days. Females were also
active on less days as compared to their male counterparts, and on those active days
read less articles on average. So, not only is the user base unbalanced, but also females
tend to be less active customers. Is it possible there is a case of unfair recommendations
from Der Standard recommendation algorithms? It is possible we are seeing a feedback
loop here, where females make up a smaller proportion of the user base, and therefore
receive less accurate recommendations. As a consequence of worse recommendations,
females could be less active and read fewer articles on the website, consequently reducing
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Figure 3.2: Account gender by year

their recommendation quality even further. This theory will be explored further in the
modeling section.

Male Female
Proportion of User Base 0.638 0.362
Proportion of Readers in Last 30 Days 0.805 0.195
Avg Active Days 17.2 14.4
Avg # Articles Read 93.9 68.3
Avg Article Read per Active Day 4.4 3.7

Table 3.2: Reading statistics by gender.

3.2.2 Reading Behaviors.

Next, it is interesting to see if there exists a difference in reading preference between the
two genders. Table 3.3 shows the top 10 categories read by each gender. The topics that
are not contained in the other gender’s top 10 are highlighted. The reading behaviors
are fairly similar, with the most notable difference following typical gender stereotypes:
men rank Sports higher than women rank Sports. Men also rank Science in the top 10,
whereas women prefer the Culture and Diverse categories. We dig a bit deeper by also
displaying the subcategories of each gender’s preferences in Table 3.4. Here we also see
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gender stereotypes involved, where men prefer Football (Soccer), Network Policy, and
Innovations, whereas women prefer World Chronicles, Columns, and Health articles.

Top Category Rank Male Female
1 Inland Panorama
2 Panorama Inland
3 Web Opinion
4 Sport Web
5 Opinion International
6 International Lifestyle
7 Economy Economy
8 Budget Budget
9 Lifestyle Culture
10 Science Diverse

Table 3.3: Reading category preference by gender.

Top Subcategory Rank Male Female
1 Inland Inland
2 Panorama Panorama
3 Football (Soccer) Commentary
4 Commentary Diverse
5 Europe Austria Chronicle
6 Economic Policy World Chronicle
7 Austria Chronicle Columns
8 Network Policy Europe
9 Innovations Economic Policy
10 Diverse Health

Table 3.4: Reading subcategory preference by gender.
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3.3 Geography
Our second sensitive attribute is geographical location. In this section, we discuss the
location of Der Standard users and how we apply an overall user location. We then
provide reading statistics and reading preferences, and finally, apply the political lean
labels to the user data.

3.3.1 Exploratory Data Analysis

Next, we start with a thorough exploratory data analysis of the geographical location
attribute. When users interact with the website, the geolocation is recorded by the city
and surrounding area. From here on out we will refer to it as a city-specific region. First,
we display the last 30 days of interaction data on a country level (see Table 3.5) to see
where most users are interacting with the website.

Country Count Percentage
Austria 41,855,028 0.878
Germany 2,433,502 0.051
United States 669,469 0.014
Switzerland 413,288 0.009
Italy 248,128 0.005
United Kingdom 202,623 0.004
Spain 127,587 0.003
Netherlands 121,464 0.003
Ukraine 111,172 0.002
France 102,262 0.002

Table 3.5: Interaction data: top 10 countries.

Not surprisingly, the top two countries with the most interactions are Austria and
Germany, with 88% and 5% of the overall interactions, respectively. Somewhat surprisingly
is the United States having the third most interactions. These interactions could come
from German-speaking Americans, or possibly Austrian or German travelers accessing the
website from the United States. If we zoom in on Austria, Figure 3.3 shows a heatmap of
where the interactions are coming from. As expected, Vienna has the largest number of
interactions, followed by other major cities such as Linz, Graz, Innsbruck, and Salzburg.

This map also shows another important point: although Vienna and other cities account
for a large number of user interactions, there are also a substantial amount of interactions
coming from outside the cities. Austrians from small villages are also accessing Der
Standard to get their daily news, and they need to be represented in the RS as well.

As stated, these figures show where users are clicking on the website, but not where
the users are actually located. Although user location is not provided in the data, we
could infer it based on the interaction location. To do this inference, we split the data
by user and determined the most frequent location of where users are reading articles.
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Figure 3.3: Interactions by geographical location.

Note: locations that were not on a city-specific level were discarded. We recognize that
users could be reading articles on their commute or at the workplace, but given the
data to work with, this is the best solution for estimating user location. We also argue
that although a user may commute and read articles in a location other than home,
they are also part of the community in which they work. We will call this location user
location, which simply means the location in which they access articles most frequently,
not necessarily where they live. The top 10 user locations are given in Table 3.6 with the
corresponding number of users who are located there.

User Location Count Percentage
Vienna 51,592 0.416
Salzburg 4,725 0.038
Dornbirn 4,235 0.034
Linz 3,956 0.032
Graz 3,063 0.025
Hard 2,664 0.022
Lauterach 2,292 0.019
Lustenau 2,260 0.018
Innsbruck 1,636 0.013
Schwarzach 1,628 0.013

Table 3.6: Top 10 user locations.
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Next, in order to split our data into binary groups, we chose to categorize users living in
the five largest Austrian cities by population as large-city users, and all others reside in
smaller cities or the countryside. According to Wikipedia3, the top five most populous
cities in Austria are:

City Population
Vienna 1,931,593
Graz 292,630
Linz 207,247
Salzburg 155,331
Innsbruck 130,585

Table 3.7: Five most populous cities in Austria.

After splitting the data into these two user groups, we then calculated basic reading
statistics for each group (Table 3.8). As you can see, the user base is very closely split
between users in big cities vs other locations. However, users located in big cities tend to
be more active, with more active days on average, more total articles read, and more
articles read per active reading day. In the results section we will see if these readers are
also more represented in the recommendation accuracy.

Big City Other
Count of Readers in Last 30 Day 64,972 59,095
% of Readers in Last 30 Days 0.524 0.476
Avg Active Days 15.1 14.4
Avg # Artcles Read 71.82 66.5
Avg Article Read per Active Day 3.83 3.69

Table 3.8: Reading statistics by geographical location.

3.3.2 Reading Behaviors

Next, we look at the reading behaviors of the users based on user location. Table 3.9
lists the top 10 categories read by each user group. Interestingly, the user groups reading
interests are not strongly affected by geography. Both user groups have almost identical
top categories; the only difference is in rank 10, where Big City users prefer Culture
whereas the Other users prefer Science. Looking at the top subcategories in Table 3.10,
here there is even less of a difference between the two groups. The only change is a small
switch in the positioning of the categories Football (Soccer) and Commentary. It seems
Austrians everywhere enjoy the same types of articles regardless of location.

3https://en.wikipedia.org/wiki/List_of_cities_and_towns_in_Austria
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Top Category Rank Big City Other
1 Panorama Panorama
2 Inland Inland
3 Opinion Web
4 Web Opinion
5 Sport Sport
6 International International
7 Economy Economy
8 Budget Budget
9 Lifestyle Lifestyle
10 Culture Science

Table 3.9: Reading category preference by geographical location.

Top Subcategory Rank Big City Other
1 Inland Inland
2 Panorama Panorama
3 Commentary Football (Soccer)
4 Football (Soccer) Commentary
5 Economic Policy Europe
6 Europe Economic Policy
7 Diverse Diverse
8 Austria Chronicle Austria Chronicle
9 Columns Columns
10 World Chronicle World Chronicle

Table 3.10: Reading subcategory preference by geographical location.

Political Labels. Next, we use the predicted political labels to analyze political reading
behaviors between geographical locations in Austria. After removing articles that were
not scored, we display the predicted political reading habits of the top 10 cities in Austria
in Figure 3.4. Interestingly, this picture is not what we assumed to find. According to the
political labels, the location of Austrians does not affect their political reading patterns.
Even Vienna has a nearly 50/50 split in right vs left-leaning articles. When analyzing
our groupings of Big City vs Other, there is no correlation in political reading patterns.
In table 3.11 we group articles by either left, right, or leastbiased and display the lean
split by geographical location.

With these findings, we will instead move forward with an analysis of diversity using the
articles’ categories as opposed to the articles’ political content. More discussion on the
political findings will be examined in the Discussion and Conclusion chapters.
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Figure 3.4: Political lean by city.

geo_location left leastbiased right
Other 0.401 0.213 0.386
Big City 0.395 0.209 0.396

Table 3.11: Political lean by geographical location.
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CHAPTER 4
Comparing Fairness-Aware NRS

Across Groups

In this chapter, we first prepare the data and then perform hyperparameter tuning. Next,
we apply the algorithms to our datasets, and display the results. Finally, we provide
overall recommendations for future researchers.

4.1 Preprocessing
To perform the modeling part of the analysis, a publicly available library called RecBole
[ZMH+21] was utilized. Specifically, an extension of the library title RecBole-FairRec
[ZMH+21] was employed. Hyperparameters were tuned using a sample of 2,000 users
due to time and resource constraints. All models have the following training setup.
Hyperparameters specific to the models will be covered in the corresponding sections.

• Train/Test/Split was set at 80%/10%/10% of the data.

• Evaluation setting was uni100, which means during the evaluation step, 100 negative
items are sampled with uniform distribution for each positive item in the testing set
The model is then evaluated on these positive items with their sampled negative
items.

• train-batch-size is set to the default, 2048 observations

4.1.1 FOCF

The hyperparameters from the original authors [YH17] were used for the start of the
tuning process (see Table 4.1). However, after a few trials, it was quickly discovered the
weight decay must be reduced and the fair-weight should be adjusted for some models.
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The fair-weight refers to the coefficient of the fairness loss in proportion to the accuracy
loss. Interestingly, the FOCF authors used an equal weighting for all models and achieved
desirable results. In our experiments, we found that an equal weighting for the value and
absolute models had a severe impact on accuracy. Figure 4.1 shows an example of this
phenomenon with the value model. As you can see from the figure, the steep decrease
in accuracy occurs when moving from fair-weight = 0.35 to 0.5. This is also the point
where a noticeable increase in unfairness occurs. Based on these experiments, fair-weight
was set to 0.3 for the value and absolute models, where there was a negligible decrease in
accuracy and the lowest unfairness.

Model Learning-Rate Fair-Weight Weight-Decay Learner
Original 0.0001 1.0 0.0010 adam
Baseline 0.0002 0.0 0.0001 adam
Value 0.0002 0.3 0.0001 adam
Absolute 0.0002 0.3 0.0001 adam
Over 0.0002 1.0 0.0001 adam
Under 0.0002 1.0 0.0001 adam
NonParity 0.0002 1.0 0.0001 adam

Table 4.1: Hyperparameter settings for FOCF models.

Figure 4.1: Fairness-accuracy trade-off by fair-weight setting.

4.1.2 PFCN

For the PFCN models, the original hyperparameters were used from the authors [LCX+21],
with one exception: the DMF model. This model required more hyperparameter tuning
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to report satisfactory results. The biggest change was to the learning rate. We found
the validation results of each epoch to bounce around sporadically, a clear indication
the learning rate was too high. We also needed to reduce the weight-decay from the
suggested 0.001 to 0.0001, which is also in line with the other models. After reducing the
weight-decay and learning-rate, we were able to achieve satisfactory results.

First, we list the hyperparameters in Table 4.2 that are consistent for every model, then
list the parameters that are unique for each model.

dis-hidden-size=[128,256,128,128,64,32]
filter-mode=sm
dis-dropout=0.3
train-epoch-interval=5
dis-weight=10
neg-sample-num=uniform, 1
weight-decay=0.0001
activation=leakyrelu

All Models

activation=leakyrelu
num-layers=3
dis-activation=leakyrelu
mlp-activation=reluDMF

mlp-dropout=0.2
mlp-hidden-size=[64, 32, 16]WideDeep dropout=0.2

Table 4.2: Hyperparameter settings for PFCN models.

Note: filter-mode = sm refers to the method of creating the filter function, where sm is
the separate method. In our case, since we are training on only one sensitive attribute
per model, one filter function is trained for that attribute.

To run the full experiment, 10,000 random users were sampled from users who have
reported their gender. When running the models on the full sample, several fair-weights
were also tested in order to corroborate the results of the smaller sample. The full
modeling results are reported in the next section.

4.2 Results
Since there is a large number of models and metrics we are comparing, this section will
first be broken down into three categories of metrics: accuracy, unfairness, and diversity.
Each section will discuss the results separately, and at the end we provide a summary
table bringing the results together (Table 4.11). For ease of viewing, the best model and
any models that came in very close are highlighted for each metric. Models that also
performed comparably well are highlighted with a paler shade of yellow.

Other table notes:

31



4. Comparing Fairness-Aware NRS Across Groups

• the accuracy metrics are all ranking metrics, meaning they are typically set at a
value of K, such that the metric includes K recommended items in the item list.
For this analysis, the value of K is set at five for all metrics.

• The Baseline model refers to the FOCF method with no unfairness metric added
to the loss function, therefore it is normal matrix factorization.

• The other FOCF methods are labeled by which unfairness metric is added to the
cost function. We will also refer to the models in this manner, for example, Under
model referring to the under-unfairness-reducing-model. Note: the metrics are
measuring unfairness, therefore smaller values are desirable.

• NDCG_F and NDCG_M refer to NDCG of Females and Males, respectively.
NDCG_O and NDCG_BC refer to the geolocations of Other and Big City,
respectively.

4.2.1 Model Accuracy Comparison

Table 4.3 presents the results of our modeling experiment for the sensitive feature, gender.
The performance of various models is evaluated based on the normalized discounted
cumulative gain (NDCG), a comprehensive ranking metric. Our analysis reveals that the
models employing the PFCN approach outperform the FOCF models, with the exception
of the DMF model. Specifically, BiasedMF is identified as the top-performing model
across all the accuracy metrics, including NDCG, recall, hit, and mean reciprocal rank.
The PMF and WideDeep models also exhibit competitive performance, ranking second
in accuracy metrics.

Model NDCG NDCG_F NDCG_M Recall Hit MRR
Baseline 0.3517 0.3914 0.3425 0.2989 0.7448 0.4895
Value 0.3502 0.3907 0.3408 0.2979 0.7428 0.4880
Absolute 0.3504 0.3911 0.3409 0.2981 0.7431 0.4882
NonParity 0.3519 0.3872 0.3437 0.2985 0.7435 0.4903
Under 0.3403 0.3802 0.3311 0.2944 0.7296 0.4740

FOCF

Over 0.3517 0.3914 0.3425 0.2989 0.7448 0.4895
BiasedMF 0.3838 0.4080 0.3781 0.3102 0.7734 0.5353
PMF 0.3800 0.4016 0.3750 0.3070 0.7686 0.5329
WideDeep 0.3760 0.4032 0.3697 0.3047 0.7663 0.5253PFCN

DMF 0.3422 0.3628 0.3374 0.2792 0.7312 0.4846

Table 4.3: Accuracy comparison - gender.

In contrast, the DMF model demonstrates poor performance among all the PFCN models,
ranking only above the FOCF Under model in the overall rankings. This outcome could
be attributed to inadequate hyperparameter tuning or unsuitability of this method for
the given dataset.
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Regarding the FOCF models, the comparison reveals little variation in performance
among most of the models. This outcome is desirable, as it implies that unfairness metrics
can be incorporated into the loss function with minimal impact on accuracy. However, the
FOCF Under model exhibits a decrease of 0.1 points in NDCG. Notably, the NonParity,
Baseline, and Over models exhibit the highest accuracy among the FOCF models. The
Baseline model is expected to produce the best accuracy as the loss function is solely
focused on improving accuracy without considering unfairness metrics. Interestingly, the
Overestimation Unfairness model results show no noteworthy difference from the baseline
in terms of accuracy.

Finally, we observe that, despite female users’ disproportionate representation in the
dataset, they receive more accurate recommendations than their male counterparts, as
evidenced by the NDCG scores for the Female and Male columns. This outcome is
unexpected, given our initial hypothesis that imbalanced data would lead to inaccurate
recommendations. One plausible explanation for this counter-intuitive result is that
female users may exhibit less diverse reading patterns, making it easier to provide them
with more accurate recommendations. We will explore this topic further in the diversity
section.

Table 4.4 presents the results of our investigation based on geographical location. Consis-
tent with the previous analysis, the PFCN models outperform the FOCF models, except
for the DMF model. Among the PFCN models, the PMF model slightly outperforms the
BiasedMF model on this dataset.

Similarly, the comparison of FOCF models with each other reveals that the incorporation
of different unfairness metrics in the loss function has minimal impact on accuracy. Unlike
the gender-based analysis, we do not observe a noteworthy decrease in accuracy for the
FOCF Under model.

Notably, the data exhibits a balanced distribution with respect to geographical location
as the sensitive attribute, and users from the Other regions receive only slightly better
recommendations than their Big City counterparts.

Model NDCG NDCG_O NDCG_BC Recall Hit MRR
Baseline 0.3243 0.3290 0.3199 0.3140 0.6987 0.4406
Value 0.3192 0.3285 0.3106 0.3104 0.6801 0.4292
Absolute 0.3246 0.3298 0.3198 0.3139 0.6962 0.4415
NonParity 0.3244 0.3288 0.3204 0.3141 0.6985 0.4410
Under 0.3221 0.3276 0.3171 0.3150 0.6919 0.4361

FOCF

Over 0.3243 0.3290 0.3199 0.3140 0.6987 0.4406
BiasedMF 0.3506 0.3553 0.3462 0.3250 0.7199 0.4758
PMF 0.3512 0.3552 0.3474 0.3273 0.7238 0.4766
WideDeep 0.3429 0.3505 0.3359 0.3213 0.7147 0.4666PFCN

DMF 0.3233 0.3295 0.3176 0.3047 0.6966 0.4412

Table 4.4: Accuracy comparison - geographic location.
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4. Comparing Fairness-Aware NRS Across Groups

4.2.2 Model Unfairness Comparison

The comparison of unfairness metrics from the gender analysis can be seen in Table
4.5. Here, we see more varying results than the accuracy measurement results. First,
when comparing the absolute difference of NDCG, the DMF model performs best, with
BiasedMF and PMF also performing well. Moving to the value and absolute unfairness
measures, the FOCF models perform well. Not surprisingly, the models that are built to
minimize these metrics perform the best. Overestimation unfairness is also minimized by
the Value and Absolute models. And important note here - the PFCN models drastically
increase value, absolute, and overestimation unfairness when compared to the Baseline
FOCF model. The Under model does somewhat reduce the underestimation unfairness
metric; however, surprisingly the WideDeep, PMF, and BiasedMF models reduce it
dramatically. Similarly, the NonParity model reduces non-parity unfairness, but using
the BiasedMF and PMF models results in an even more drastic reduction.

Model Diff NDCG Value Absolute Under Over NonPar
Baseline 0.0489 0.1113 0.0878 0.0834 0.0279 0.0355
Value 0.0499 0.1088 0.0869 0.0845 0.0243 0.0382
Absolute 0.0502 0.1088 0.0869 0.0845 0.0243 0.0382
NonParity 0.0435 0.1112 0.0865 0.0818 0.0293 0.0098
Under 0.0491 0.1649 0.1394 0.0704 0.0945 0.0301

FOCF

Over 0.0489 0.1113 0.0878 0.0834 0.0279 0.0355
BiasedMF 0.0299 0.1908 0.1620 0.0256 0.1652 0.0005
PMF 0.0266 0.1958 0.1671 0.0260 0.1697 0.0009
WideDeep 0.0335 0.2327 0.2187 0.0078 0.2249 0.0045PFCN

DMF 0.0254 0.2283 0.1997 0.0396 0.1887 0.0028

Table 4.5: Unfairness comparison - gender.

The results from the geography analysis (Table 4.6) look similar in most aspects. The
absolute difference in NDCG is lower overall for all models, possibly on account of the
more balanced dataset and similar reading patterns of the two groups. Again, the Value
and Absolute models perform best on the value, absolute, and overestimation unfairness
metrics. Also similar to the gender analysis, underestimation unfairness is reduced most
effectively with the WideDeep, PMF, and BiasedMF models, and non-partiy unfairness
is best reduced with the PFCN and NonParity models.

4.2.3 Model Diversity Comparison

The dissimilarity metric, as defined in Chapter 2, was utilized to measure dissimilarity
based on article attributes of category and subcategory. The attributes were one-hot
encoded and cosine similarity was computed for each item pair in the recommendation
list. The average dissimilarity score was then calculated for all users.

In this section, we present the results of the dissimilarity analysis for the entire dataset
and then display the metrics for user groupings. The gender-based analysis results, shown
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Model Diff NDCG Value Absolute Under Over NonPar
Baseline 0.0091 0.1014 0.0743 0.0758 0.0256 0.0121
Value 0.0180 0.0997 0.0712 0.0700 0.0298 0.0111
Absolute 0.0100 0.1001 0.0734 0.0754 0.0247 0.0125
NonParity 0.0084 0.1014 0.0743 0.0758 0.0256 0.0081
Under 0.0105 0.1273 0.0972 0.0648 0.0625 0.0112

FOCF

Over 0.0091 0.1014 0.0743 0.0758 0.0256 0.0121
BiasedMF 0.0091 0.1111 0.0858 0.0180 0.0931 0.0035
PMF 0.0078 0.1134 0.0896 0.0165 0.0969 0.0032
WideDeep 0.0146 0.1195 0.1060 0.0101 0.1094 0.0025PFCN

DMF 0.0119 0.1187 0.0973 0.0325 0.0861 0.0009

Table 4.6: Unfairness comparison - geographical location.

in Table 4.7, indicate that the FOCF models slightly outperform the PFCN models.
This outcome implies that the FOCF models provide users with a slightly more uniform
exposure to overall item listings. However, the PFCN models provide a greater variety of
articles to users, with the BiasedMF model exhibiting the highest dissimilarity.

The geography-based analysis, presented in Table 4.8, yields similar results with slight
variations. The entropy is higher for the FOCF models, and the WideDeep model also
ranks highly. Once again, the PFCN models provide the highest dissimilarity, with the
FOCF Value model also demonstrating high dissimilarity.

Model Entropy Dissimilarity
Baseline 0.0049 0.92487
Value 0.0048 0.92435
Absolute 0.0049 0.9244
NonParity 0.0049 0.92491
Under 0.0049 0.92317

FOCF

Over 0.0049 0.92487
BiasedMF 0.0047 0.92853
PMF 0.0047 0.92683
WideDeep 0.0048 0.92779PFCN

DMF 0.0046 0.92565

Table 4.7: Diversity comparison - gender.

Next, we examine the metrics split by user group in Tables 4.9 and 4.10. The analysis
indicates that, on average, the entropy is slightly higher for male users compared to
female users. Conversely, the dissimilarity is higher for female users. The BiasedMF
and PMF models demonstrate the best absolute difference, but there is little variability
overall between all the models. The PFCN models exhibit the highest absolute difference
in dissimilarity, with the PMF model performing the best.

In the geography-based analysis, we observe that, on average, the entropy is higher for the
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4. Comparing Fairness-Aware NRS Across Groups

Model Entropy Dissimilarity
Baseline 0.00550 0.93434
Value 0.00531 0.93851
Absolute 0.00550 0.93409
NonParity 0.00551 0.93422
Under 0.00560 0.93425

FOCF

Over 0.00550 0.93434
BiasedMF 0.00540 0.94009
PMF 0.00540 0.93898
WideDeep 0.00560 0.93956PFCN

DMF 0.00540 0.94391

Table 4.8: Diversity comparison - geographical location.

Big City group. The dissimilarity varies by model, with some models exhibiting higher
dissimilarity for the Other group and some for the Big City group. Notably, there is no
clear winner in terms of absolute difference of entropy and dissimilarity on this dataset.
The baseline FOCF and WideDeep models demonstrate the smallest absolute difference in
entropy, while the baseline and over FOCF models exhibit the lowest absolute difference
in dissimilarity.

Overall, the variability of dissimilarity across the models is minimal, indicating that the
application of accuracy fairness techniques has minimal impact on diversity.

Model Ent_F Ent_M Diff Ent Dissim_F Dissim_M Diff Dissim
Baseline 0.00670 0.00700 0.00030 0.92946 0.92380 0.00566
Value 0.00670 0.00700 0.00030 0.92968 0.92312 0.00656
Absolute 0.00670 0.00700 0.00030 0.92968 0.92318 0.00650
NonParity 0.00670 0.00700 0.00030 0.92931 0.92389 0.00542
Under 0.00670 0.00700 0.00030 0.92909 0.92179 0.00731

FOCF

Over 0.00670 0.00700 0.00030 0.92946 0.92380 0.00566
BiasedMF 0.00650 0.00670 0.00020 0.93119 0.92791 0.00328
PMF 0.00680 0.00690 0.00010 0.92684 0.92682 0.00002
WideDeep 0.00660 0.00700 0.00040 0.93055 0.92715 0.00340PFCN

DMF 0.00650 0.00680 0.00030 0.92827 0.92504 0.00323

Table 4.9: Diversity comparison split by gender.

4.2.4 Overall Recommendations

Finally, we bring the full results together in Table 4.11 and provide recommendations
for future researchers. Overall, regarding accuracy, the clear winner is PFCN. With the
exception of DMF, these models perform much better on both analyses compared to the
FOCF models. However, when comparing the unfairness across models, the results are
more mixed. The results depend entirely on which metric is of interest. PFCN models
tend to effectively reduce the difference in NDCG, under, and non-parity unfairness. On
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Model Ent_O Ent_BC Diff Ent Dissim_O Dissim_BC Diff Dissim
Baseline 0.00620 0.00620 0.00000 0.93430 0.93438 0.00008
Value 0.00593 0.00611 0.00018 0.93785 0.93911 0.00126
Absolute 0.00610 0.00620 0.00010 0.93421 0.93398 0.00024
NonParity 0.00617 0.00621 0.00004 0.93388 0.93453 0.00065
Under 0.00620 0.00640 0.00020 0.93330 0.93513 0.00183

FOCF

Over 0.00617 0.00620 0.00004 0.93430 0.93438 0.00008
BiasedMF 0.00600 0.00610 0.00010 0.94156 0.93874 0.00282
PMF 0.00610 0.00600 0.00010 0.93984 0.93819 0.00165
WideDeep 0.00620 0.00620 0.00000 0.93902 0.94006 0.00104PFCN

DMF 0.00620 0.00610 0.00010 0.94277 0.94496 0.00219

Table 4.10: Diversity comparison split by geographical location.

the other hand, these models drastically increase value, absolute, and over unfairness
when compared to the baseline. FOCF models are better suited for value, absolute, and
over unfairness. In regards to diversity, neither model class had a big impact on these
metrics. FOCF produced slightly better results on entropy, and PFCN produced slightly
better results on dissimilarity.
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CHAPTER 5
Discussion

5.1 Political Labeling

The political labeling task was both an interesting and challenging piece of this thesis.
Our initial assumption was that Austrians of different geographical locations would have
dissimilar and distinct political reading patterns. This assumption was, however, not
supported by the data, and no correlation was found between political reading behavior
and geography. Here, we further elaborate on the limitations and potential theories that
may explain the observed findings.

Our first discussion point is around the accuracy of the political labeling process. We
acknowledge that the majority of articles (78%) were not able to be classified and were
therefore labeled as unknown. For reference, only about 20% of the training data was
labeled as unknown. This is an indication that there may be an underlying problem that
is not allowing the algorithm to confidently predict political lean.

One possible limitation affecting accuracy is the translation of the articles from German
to English. When translating between two languages, there is often some amount of
information lost, as many complex ideas cannot be perfectly translated in a one-to-one
relationship. Especially in the context of politics, word choice can be used to convey
the same topic from two different perspectives. For example, words such as immigrant
and expatriate have to same meaning but different connotations [Nas17]. When using
the word expatriate, English speakers tend to think of someone coming from wealth
and privilege, whereas the word immigrant is used for people who are in less privileged
positions [Nas17]. Although both words have a similar meaning, they can be used to
spark positive or negative emotions toward this class of people. Seeing as immigration is
a crucial topic discussed by political parties, word choice and possible mistranslations
can quickly change the tone of an article.
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5. Discussion

Another potential limitation that could have affected the accuracy of the political
labeling task is the use of a binary political leaning classification system. Political beliefs
and attitudes are not necessarily black and white, and individuals can have complex
and nuanced perspectives on different issues. Especially in Austria where more than
two political parties have influence in the government, we may have missed important
variations and nuances in readers’ political attitudes by labeling only left vs right. Future
studies could consider incorporating a more nuanced classification system, such as a
multi-dimensional approach that takes into account different dimensions of political
ideology, such as economic, social, and foreign policy stances. This could potentially
yield more accurate and comprehensive insights into readers’ political reading behaviors.

Our second discussion point is around the data source. The limitation here is that we
only had access to one Austrian newspaper, Der Standard. In general, Der Standard is
known to be a more left-leaning news source. By only using one newspaper, our data is
biased to only include readers of Der Standard. Our results could indicate that readers
of Der Standard have homogenous reading patterns, regardless of geography. Since we
do not have access to other newspapers’ data, we cannot confidently extrapolate these
results to Austrians who read other newspapers.

In conclusion, while our initial assumption of finding dissimilar and distinct political
reading patterns based on geography was not supported by the data, there are still
potential limitations and theories that could explain these findings. The accuracy of the
political labeling process, the data source, and the binary classification system are all
factors that could have influenced the observed results. Future studies could address
these limitations and further explore the relationship between user location and political
reading behaviors.

5.2 FOCF
The results of the FOCF model comparison yielded interesting findings, especially when
compared to the original authors’ [YH17] outcomes. The first contrasting finding is their
results on unbalanced data. Their results from that analysis showed that underrepresented
groups were treated unfairly by standard matrix factorization methods. In contrast, the
results of our gender analysis show that although females are underrepresented in the
data, they were actually receiving better recommendations across all models. There is
agreement present in our findings with the original authors in that our unbalanced dataset
(gender) had higher overall unfairness compared to our balanced dataset (geography).

Our other contrasting finding is that when optimizing for the value and absolute unfairness
metrics, the original authors observed a larger drop than in our analysis. In addition, the
Over model is specifically interesting in that we do not see a change in the over unfairness
metric whatsoever. However, we do pick up on similar correlations between the metrics
and models as the authors. For example, optimizing either the over or under unfairness
metric causes the other to rise. We also have the positive outcome that optimizing for
any unfairness metric does not have a substantial effect on the accuracy measurements.
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The contrasting findings between our study and the original authors’ emphasize the
need for further research into the performance of FOCF models on unbalanced data.
Future research can benefit from comparing the performance of FOCF models on different
datasets and investigating the effectiveness of other fairness-aware algorithms. Moreover,
it is essential to examine how the choice of fairness metric may affect the model’s
performance and the outcomes of the recommendations.

5.3 PFCN
The original authors [LCX+21] did not use the unfairness metrics outlined in this work,
and instead defined unfairness as the ability of the attacking model to differentiate the
sensitive features from user embeddings; this was measured using Area Under the Curve
(AUC). Despite these differences, we found that the method proposed by the original
authors can still be effective at reducing certain types of unfairness that we studied. This
is an important finding, as it demonstrates the potential of using different fairness metrics
in tandem to gain a more complete understanding of the performance of a recommender
system.

Specifically, the PFCN method was particularly effective at reducing under and non-parity
unfairness, as well as the absolute difference in NDCG, despite not being explicitly trained
to reduce these metrics. This highlights the potential of exploring other fairness-aware
methods that were not explicitly trained on these fairness metrics. It is possible that
other machine learning models could also have a positive impact on reducing unfairness
in recommender systems, and further research in this area is warranted. Ultimately, the
ability to identify and address various types of unfairness in recommender systems will
help to create fairer and more inclusive digital spaces, where users have access to diverse
perspectives and information.
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CHAPTER 6
Conclusion

6.1 Summary
In conclusion, this thesis provides valuable insights into the role of fairness and diver-
sity in news recommender systems, specifically in the context of the Austrian media
landscape. The research aimed to address the potential negative consequences of biased
recommendations and filter bubbles, such as societal polarization and the suppression of
information. By analyzing the performance of various models using accuracy, unfairness,
and diversity metrics, this study aimed to identify the most effective approaches for
generating fair and diverse news recommendations.

In order to identify relevant group unfairness metrics, we performed an extensive literature
review and narrowed down the metrics into a suitable list. We described the evaluation
metrics and techniques used to measure accuracy, fairness, and diversity. We also
researched state-of-the-art fairness-aware algorithms to be applied to our data.

The empirical research section then revealed interesting findings in our data around
reading behaviors and the political lean of news articles. Our gender analysis explored
the topic of imbalanced data and how it might affect accuracy and unfairness. The
geographical analysis was particularly interesting in that it showed no correlation between
user location and political reading behaviors.

Finally, in the comparison of algorithms section we performed an extensive comparison
of the methods and provided recommendations. The study found that PFCN models
outperform FOCF models in terms of accuracy when recommending news articles, with
the BiasedMF model performing the best across all accuracy metrics. The study also
examined unfairness metrics and found that FOCF models performed well on these
metrics The PFCN models worsened unfairness scores for some metrics, but vastly
improved others. This finding highlights the importance of choosing the right metric
based on the use case. Finally, the study explored the diversity of recommendations
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using dissimilarity and entropy metrics, finding that neither method caused a drastic
change in these metrics.

Challenges were encountered along the way, especially in terms of the application of the
algorithms. Recbole-FairRec [ZMH+21] is a relatively new extension of Recbole, and
with that comes a lack of functionality and first-user bugs. Overall, we were able to
adapt the system to our needs and hope our usage and suggestions will further the use of
this well-built package.

This study highlights the importance of incorporating fairness and diversity metrics
into the design and evaluation of recommender systems. The findings demonstrate
that accuracy and fairness can be achieved simultaneously with the right modeling
approach, while diversity can be held constant using these modeling techniques. By
developing more fair and diverse news recommender systems, we can help mitigate
the negative consequences of biased recommendations and filter bubbles, and promote
greater access to diverse information sources. This research has implications for both
the news media industry and the wider public, as well as for researchers in the field of
recommender systems. News media organizations can use the insights gained from this
study to design more ethical and inclusive news recommender systems, ensuring that
their recommendations do not unfairly prioritize certain groups or limit access to diverse
viewpoints.

Additionally, the results of this study highlight the need for ongoing research into the
relationship between user location and political reading behaviors. Although this analysis
was limited to only one news source, this research can be extended to include more
sources to get a more accurate picture of the reading choices of Austrians. This study
can also act as a guideline for similar research performed in other countries around the
world.

In future research, we recommend exploring the impact of other factors on the per-
formance of recommendation systems, including user privacy concerns, the impact of
recommendation systems on user behavior, and the use of other fairness techniques.
Additionally, we recommend exploring the use of other datasets and evaluating the
impact of different sensitive attributes on the performance of recommendation systems.

6.2 Contribution
Here we outline the research questions again that were answered by this work.

RQ1: To what degree do different reading behaviors of different groups impact recom-
mender systems and recommendations in the domain of news media?

Here we had contrasting findings compared with our original hypothesis that readers
of different geographical areas have different reading patterns. Although we could
not perform an analysis of political reading preferences split by geography, this is an
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interesting finding itself. We also observe a difference between the two analyses, in that
the gender dataset with imbalanced data and slightly different reading patterns led to
overall higher unfairness as compared to the geographical analysis with balanced data
and similar reading patterns.

RQ2: When is it appropriate to use different fairness metrics for NRS?

For future researchers, we have provided the background of several unfairness metrics in
Chapter 2, and guidance on the metrics in Results Section 4.2.

RQ3: To what extent do different recommender system algorithms affect these fairness
metrics, in terms of improvement made, cost to accuracy, affect to diversity ect?

The results section of the analysis provided a thorough comparison of algorithms across
accuracy, unfairness, and diversity metrics. The overall recommendation section (4.2.4)
at the end of Chapter 4 provides guidance on which models are best in which situations.

6.3 Future Work
Future work, especially for the benefit of the political labeling section, could include
more Austrian newspapers in the analysis. In this thesis, we only had access to a single
Austrian newspaper, and therefore only have data from that paper. Of course, this
creates an inherent bias in our data, and makes the reading behaviors not generalizable
to all Austrians. We could also either (1) find a political labeling NLP algorithm that
was built using the German language, or (2) create one ourselves. This would eliminate
the potential information loss that comes with translating articles into another language.

As outlined previously, there is also grounds for further investigation into other fairness-
aware algorithms. From this analysis, we showed that using algorithms outside their
specific intended purpose may produce impressive results.
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